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Short Papers

Electrostatics of the Microstrip-Revisited

P. SILVESTER AND PETER BENEDEK

Abstract—The well-known integral-equation formulation of the

microstrip problem is solved by a projective method using trial

functions that preserve the essential singularity in charge distribu-

tion at the strip edges, Suitable computer programs are presented.
This formulation is believed particularly usefuf in the analysis of
strip discontinuities, where details of the charge distribution cannot
easily be traded off against speed of computation.

INTRODUCTION

Numerous solutions have appeared in the literature for the elec-
trostatic capacitance of microstrip transmission lines based on con-
formal mapping [1], substrip approximations to the integral-equa-

tion formulation of the problem [2], [3], variational formulations
[4], as well as others. All these methods have produced quite good

approximations to the capacitance values for strips both wide and
narrow, as one might well expect, since the electrostatic capacitance
is variationally stationary. Hence, even relatively large errors in the

computed charge distributions will yield acceptably good values of

C. As the analysis of discontinuity effects (open circuits, bends, and
others) assumes greater importance, however, an accurate knowledge
of the charge distribution itself becomes increasingly necessary. Of
the published methods for finding charge distribution, only the sub-
strip approximations [2], [3] can be expected to furnish reasonably

good results; polynomial approximations cannot do so because of the
excessively smooth behavior of polynomials near the strip edges. A
method is therefore desired that will have accuracy at least compa-

rable to the substrip solutions, but which will not consume large

amounts of computing time. Below, a method is proposed that is ca-
pable of dealing with the electrostatics of both single and coupled
strips, which takes little computing time but yields very good charge-

distribution accuracy, including preserving the all-important singu-
larity at the strip edge.

FORMULATION OF THE PROBLEM

As in previous work, the TEM formulation of the microstrip
problem is used. The integral equation that governs the electrostatic

charge distribution on the strip, with reference to Fig. 1, is [2]

@(m) = ~ ‘lU($)G(Z; $) d$ (1)
-1

where @ is the electric potential on the strip, a is the charge dis-
tribution, and G (x; g) is the Green’s function for the problem. It can
be shown, using extended image theory, that the necessary Green’s

function is

where K = (eo — q) /(eo +q). It will be noted that the Green’s function
contains a singularity of the form log I x –E 1.

As is well known [5], the charge distribution u on the strip is con-

tinuous, with singularities at the strip edges. It will be assumed to be
of the form

4.9
u(g) = —

<l–p-
(3)

where c(g) is a slowly varying continuous function. According to the
Weierstrass approximation theorem, such functions are well approxi-
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mated by polynomials. Therefore, a good family of functions for ap-

proximating the charge distribution will be {~m}, given by

(4)

where

MO= rt[(+)’ - x’], ?2>1.
,-1

f,(x) = 1. (5)

Approximating the charge distribution by

W = ~ U,*i(E) (6)

the integral equation (1) assumes the form

(7)

To solve for the coefficients a;, one variant of the Galerkin-Petrov
method [6] will be used. Projecting both sides of (7) onto a finite set

of even-order Legendre polynomials PZi (x), one obtains

J
+1 +1 +1

CP(X)P2J4dx = f (z;H 4&)p2j(~)G(~; 9 d~dx. (8)
-1 i-l -1 -1

It might be noted in passing that the integral projection in (8) cannot

be regarded as a moment method [7 ]—not all members of the set

{&} are square-integrable, and therefore do not belong to any
normed space on which the product integral constitutes an inner

product. Nevertheless, (8) may be regarded as a matrix equation,

which may be solved readily for the coefficients ai.
No difficulty attaches to forming the integrals on the left side of

(8); in fact, for a microstrip of constant potential, all Legendre poly-
nomials except P&x) are orthogonal to the potential function. How-

ever, the double integral on the right contains a singular kernel.
Its evaluation may therefore cause some concern. Fortunately, the
integral can be shown to be convergent, so that it may be evaluated
readily, provided suitable weighted quadrature formulas are avail-

able. Such formulas may be constructed in the manner indicated by
Sdvester and Hsieh [8]; alternatively, suitable product quadrature
rules may be obtained using the program described by Gautschi [9],

or any equivalent program.

WORKING PROGRAM INFSTR

The above analysis has been incorporated in a Fortran program

useful for calculating charge distributions expressed in series up to
five terms. For economic evaluation of the singular integrals of (8), a

quadrature rule of the form

L(f(wY)
Iog[x–yl

.— _ dxdy = ~ /lijf (xi)g(Yj)
dl – x%

(9)
ii

is desired. Such formulas were developed for the final program version
by taking Gaussian quadrature formulas with weight (1 –X2)–11’, as
given by Stroud and Secrest [10], and adjoining Gaussian quadrature
formulas specially computed with the weight function log [Ix –ffi I

/(] x–E*I Y 1) ], where & represents nodes of the first quadrature
formula. This weight function has an essential singularity similar to
that of the Green’s function of the microstrip problem, but it does
not change sign within the interval of integration. Ten-point quad-
rature in both directions have been found adequate to give good ac-

curacy in microstrip problems where the width-to-height ratio of the
strip does not exceed 3.0. For wider strips, the formulation appears
to be entirely adequate, but the ten-point quadrature no longer suf-
fice for accurate projections.

It is worth noting that the approximation involved in (4), (5) is

in fact an approximation in polynomials with a Chebyshev weight.
Since any polynomials of given degree span exactly the same func-

tion space, they may readily be converted to another family of
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Fig. 1. Cross section of microstrip line.

Fig. 3.
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Fig. 2. Charge distributions obtained for microstrip line, five substrate thicknesses
wide, using three methods of computation. The solid line exhibits the results
from lNFSTR using a two-term expansion; the dotted line shows the exact
result obtained by conformal mapping. The staircase curve is that given by
ancRo The relatlve permittivit y of the substrate is assumed to be unity, i.e.,
there is no physical substrate.

polynomials not exceeding the same degree. It will be appreciated
readily that this approximation is in fact equivalent to an approxima-

tion in Chebyshev polynomials, with the equal-ripple properties of
the latter.

The program, in subroutine form, is believed sufficiently well

documented to be usable by persons other than the authors. Written
in a standard version of Fortran, it should be portable to almost any

computing installation [12 ].

APPLICATIONS TO STRIPLINES

Unfortunately, no exact results—that is to say, results of known
superior accuracy—are known for strips on substrates of high per-
mittivit y. On the other hand, for parallel strips in free air, Palmer
[11 ] has presented a detailed analysis, by means of conformal map-
ping, which permits computation of the capacitance to arbitrary
accuracy. The analysis given by Palmer is sufficiently complicated
virtually to preclude finding analytic expressions for the charge den-
sity. On the other hand, the positions of successive flux lines on the
strips themselves may be determined from Palmer’s analysis. Since
these positions are known to a high accuracy, it is possible to perform
numerical differentiations so as to plot the charge density on the strip
surfaces. Prcgrams to do so have been written so as to permit com-

parison with the results obtained from the program described above.
Fig. 1 shows comparative results obtained by conformal mapping

and by INFSTR for a strip 5 times as wide as its height above ground
plane, in uacuo. The charge distribution, it will be noted, is very simi-
lar for both the conformal mapping solution and the numerical ap-
proximation; however, the average charge densities differ sufficiently

1
oo~

Si milsr to Fig. 2, but for a micmstrip line 0.1 substrate thicknesses wide.

TABLE I

w/’h

S$lyr$
This Method

~r (30X30 matrix) (2X 2 matrix)

0.2!
2.667
0.2!
2.667
0.2!
2.667
0.2!
2.667
0.;!
2.667

2.5
2.5
4.2
4.2
9.0

12:8
16.0
51.0
51.0

28.2
92.2
42.9

145.9
84.1

296.8
144.2
516.5
444.6

1614.6

28.6
92. S
43.5

146.0
85.4

296.5
146.4
515.7
451.3

1611.0

to lead to a capacitance error of under 2 percent. The essential feature
important for analyses involving charge-distribution details, how-

ever, is obvious: the singularities at the edges are modeled much

better than is the case with the substrip approximation also shown in
Fig. 2. Similar comments apply to the results shown in Fig. 3 for a

width-to-height ratio of 0.1: a quite narrow strip. In both cases, the

approxinlations shown involve only two terms in the expansion, thus
producing computing times lower than the substrip approximation.

Computation on an IBM 360/75 is 0.7 s for the 2X2 matrix, as op-

posed to 1.8s for the substrip method using a 25 X 25 matrix. Table I
shows cclmparative values of microstrip capacitance by this method

and by the substrip method.

CONCLUSIONS

The program described above, designed to permit accurate model-
i ng of charge-density distributions on microstrip, is believed to be
much more economic than earlier electrostatic approximation pro-
grams for determining the wave-propagation characteristics from
microstr ip. Their particular importance, however, will probably come

to the fore in the detailed analysis of microstrip discontirmities,
where the comparatively crude results obtained from polynomial

appr~xir~ations containing onl y a few terms, or f rom substri p ap.
proxlmatlons, appear not altogether adequate. When propagating-

wave characteristics of microstrip are desired, the authors believe
that the MICRO program [2] is the correct one to use for extremely
wide str PS, while the new program described here is the correct one
for relatively narrow strips. The limitation, while not serious, arises
primarily in the method of numerical integration employed; that k
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to say, it is a program limitation rather than a limitation in the
method, andmayberemoved, if desired, byusing quadrature formu-
las of higher precision.
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Analysis of the Power Loss in the Coupling

Mechanism of a Cavity Resonator

M. DANIELSEN

Abstract—h analysis of a 10SSY coupling mechanism is pre-

sented. It is found that the reciprocal internal Q factor is augmented

by a contribution (1 /2)f(l /Q.J, where ~ depends on the Parameters
of the coupling mechanism and Qe, is the external Q factor. The
theory is applied to analyze the coupling to a superconducting high-Q

cavity.

Measurements on superconducting cavities with very high Q

values have shown that coupling through a lossy coupling mechanism
offers a special problem for obtaining the highest theoretical Q.
Sucher and Fox [1] and Halbritter et al. [2] reported a decrease in the

measured internal quality factor QOof a cavity due to a Iossy coupling
mechanism. In the work on superconducting cavities, the author has
analyzed the influence of the losses in a 10SSY coupling mechanism on
the measured QO of the cavity,

The analysis is performed as an analysis of the measurement of the
internal Qo of the equivalent GCL circuit of the cavity through the
equivalent lossy two-port of the coupling mechanism (Fig. 1).

The coupling factor at the input to the cavity is defined by

,=g~
Q..

(1)

where Q.. is the external Q of the cavity seen from the two-port. The
reflection coefficient at the input of the cavity, 11, is then given by

a2 ?—l—j*
—=r=
bz r+l+jx

where

(2)

(3)
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(a)

Complex propagation constant Y = a’. j @

(b)

Fig. 1. (a) Equivalent circui~ ?f cavity and coupling two-port. (b) Cavity with
transmuwon-line coupling two-port.

and

Aw= co-coo (4)

is the deviation of the frequency from the resonant frequency.
The scattering matrix of the two-port is

(5)

where u is real, if the reference plane at the input is selected suitably.
The determinant is given by

where A is the magnitude and v the phase of the determinant.

The reflection coefficient squared at the input of the two-port,
1, is found to be

Ir’l’= lro#p($-a)’+A9
(z – 0)’ + B’

(7)

where

AZ + 2Aa cos q + az
, r~llz = (8)

1+2 CCOS4+C2

2Aa sin q

a= A2+2Aacos~+a2
r’ (9)

2c sin.$
~=

1+2GCOS++2Y
(lo)

AZ – a2
A = r ——————— – 1

A2 + 2aA cos v + az

l–d
B=r —+1.

1+2 GCOS++C2

(11)

(12)

It is seen that when a#(J, the resonance is unsymmetric and can
have both a maximum and a minimum. In most conventional cavities
the unsymmetry is not seen because the phase shift through the two-

port is negligible, i.e., @=q = O. It should be possible to determine all
the involved parameters by measuring I I“ 12 as a function of the fre-
quency. However, for high-Q cavities it is normally difficult to mea-
sure the response with sufficient accuracy because of the difficulty in

accurately determining the frequency. Further, from an application

point of view, e.g., application to narrow-band filters and frequency
stabilization, it is desirable to obtain a resonance curve with a small
bandwidth. Therefore, the subsequent treatment is concentrated on
the derivation of the internal Q expressed by the measured internal
Q at the input of the two-port.

It is assumed that the two-port parameters are frequency inde-
pendent over the bandwidth of the resonator. [r’12 has a minimum
value I I“ Ifi2 at resonance, * = x~. In the following derivations it is

assumed that I % —8 I <<B and A <B. It is then found that

B2a – A’~

‘m= B2_A2 (13)


